常州精密钢管博客网

齿轮轴探伤缺陷显示原因分析

齿轮轴探伤缺陷显示原因分析

本批齿轮轴共113件,成品经磁粉探伤检测,发现有4件零件在端面齿根位置出现了亮点显示。齿轮轴材料为12Cr2Ni4A,表面进行碳氮共渗,齿底渗层深度≥0.2mm,表面硬度≥60HRC,心部硬度32~42HRC。


1.宏观检查

齿轮轴外观如图1所示,肉眼观察未见异常。

对缺陷零件进行荧光磁粉探伤检查,在局部齿根处可见细微的荧光磁粉显示。缺陷显示位置相同,形貌相似,如图1、图2所示。其余表面均未发现磁痕显示。


图1 齿轮轴宏观形貌


图2 齿轮轴齿端面上的缺陷显示    图3  另一半圆周上无缺陷显示


裂纹在齿轮轴端面的分布位置如图4所示。齿轮轴有4个齿根分别存在1条裂纹,编号分别为1#4#裂纹。


图4 裂纹在齿轮轴端面的分布位置


1#4#裂纹外观比较相似,2#裂纹和3#裂纹如图5、图6所示,裂纹由齿根表面沿齿轮轴径向和轴向向内部扩展,沿径向较平直,沿轴向较曲折。其中,1#裂纹的径向长度为0.358mm、轴向长度为1.295mm2#裂纹的径向长度为0.354mm,轴向长度为1.30mm3#裂纹的径向长度为0.334mm,轴向长度为1.208mm4#裂纹的径向长度为0.302mm,轴向长度约为1.20mm


a2#裂纹横端面(径向)形貌    b2#裂纹齿根面(轴向)形貌

5   2#裂纹外观


a                                        b

6   3#裂纹横端面(径向)形貌


2.断口观察

人为打开2#3#裂纹,对裂纹断口进行宏微观观察。


2#3#裂纹断口形貌相同。裂纹断口宏观较平整、未见明显塑性变形,源区位于齿根端角(齿根与横截面相交的端角)表面、小线源特征;齿根与横截面相交的端角不够圆滑,且加工面较粗糙,形貌如图7、图8所示。裂纹扩展区主要为沿晶形貌,局部为韧窝形貌,如图9、图10所示;人为打断区为韧窝形貌,如图11所示。

a                                                  b

7  2#裂纹断口及源区位置


8   3#裂纹断口


a                                     b

9   2#裂纹扩展区断口


 10   3#裂纹扩展区断口                     11  3#裂纹人为打断区断口

 

3.金相检查

沿齿轮轴横剖面制取试样,进行金相检查。齿轮轴渗层区及基体组织均未见异常,如图12~图14所示。按照HB5492—2011《航空钢制件渗碳、碳氮共渗金相组织分级与评定》,渗层区碳化物:1级,残留奥氏体及马氏体1~2级,心部基体组织为回火马氏体+少量铁素体,1~2级。均合格。裂纹外阔里细,裂纹两侧残留奥氏体量略有增加,裂纹处显微组织如图15所示。

(a)50×                                 (b)500×

图12   齿底渗层区组织


13   心部基体组织(500×)         14   1#裂纹处组织(100×)


a200×                                    b500×

15   1#裂纹处显微组织

4.硬度检测

在齿轮轴横剖面制取的试样上进行显微硬度(渗层深度)和洛氏硬度测量,结果分别如表1~表3所示,齿轮轴的心部硬度约为41HRC,齿底表面硬度约为690HV(按GB/T1172—1999《黑色金属硬度与强度换算值》换算为洛氏硬度为59.6HRC,与技术要求的≥60HRC的下限接近(略低,与裂纹的产生关系不大),无裂纹的齿齿底渗层深度约为0.37mm,满足≥0.2mm要求。可见,齿轮轴的渗层、硬度、组织均符合技术条件要求。然而,裂纹附近齿底的显微硬度明显高于相同位置的非裂纹区,可见裂纹两侧有增碳增氮现象。

1   齿轮轴齿底近表面硬度检测结果(0.1mmHV0.5

测试位置

位置1

位置2

位置3

位置4

平均值

HRC

硬度

683.59

693.78

697.17

686.96

690.38

59.6

2   齿轮轴齿底硬度梯度      HV0.5


表3  齿轮轴基体洛氏硬度检测结果     (HRC)

测试位置

位置1

位置2

位置3

平均值

心部

38.66

41.52

41.60

41

5.分析与讨论

本批齿轮轴共113件,成品经磁粉探伤检测只发现了4件零件的局部齿根处存在缺陷显示。裂纹的位置和形貌相似。裂纹呈放射状、分布于齿轮轴的一半圆周上,而另一半圆周及其余表面均无缺陷显示。取其中的一件解剖进行原因分析。


齿轮轴裂纹宏观断口较平整,未见明显塑性变形,源区位于齿根端角(齿根与横截面相交的端角)表面、小线源特征。裂纹扩展区主要为沿晶形貌,局部为韧窝形貌,人为打断区为韧窝形貌。上述特征表明齿轮轴裂纹的性质为沿晶脆性裂纹。


齿轮轴的渗层深度、硬度和显微组织均未见异常,也均符合技术条件要求。齿轮轴的基体组织未见异常,心部硬度符合技术条件要求,裂纹附近未发现夹渣物等冶金缺陷。表明齿轮轴裂纹的产生与热处理质量和基体材质关系不大。


齿轮轴显示的4条裂纹呈放射状分布于一半圆周位置(见图4),裂纹较细小,径向长度相近(0.302~0.358mm),基本位于渗层区内(渗层深度约为0.37mm)。裂纹附近的显微硬度明显高于相同位置的非裂纹区,裂纹两侧的显微组织中残留奥氏体量有所增多等表明,裂纹两侧有增碳增氮现象。


齿轮轴的最终热处理工序安排为:碳氮共渗→高温回火→机加工→淬火→负温时效→正温时效→吹砂→精加工。工艺路线中未安排校直工序,但在高温回火工序后要求检测 “各外圆跳动≤0.1mm”。经了解,现场生产中,碳氮共渗+回火后会有个别零件外圆跳动较大,超出公差要求,加工者会挑出来对其进行校直。若校直过程控制不当,会在三点弯曲校直时拉应力最大的下半方外圆上产生裂纹。单从三点弯曲校直的受力来分析,裂纹不应沿着轴向开裂。但是由图5b和图7可见,裂纹源区过渡不够圆滑,加工刀痕粗糙。改变了零件表面的应力分布。加之渗碳层组织的变形能力较差,就在应力较大齿根端角处形成了较细小的裂纹。在随后的淬火工序,为防止原渗碳层表面脱碳,淬火在碳势约为0.88%的保护性气氛中保温约1h,此过程会使已形成的校直裂纹两侧有轻微的渗入现象,导致裂纹两侧的硬度和显微组织发生了改变。因此,该批产品内少量零件上探伤显示的缺陷为校直裂纹。


针对以上问题,我们对热处理工艺进行了细化,要求在淬火前操作者对来件的外圆跳动进行分检。跳动超差严重的直接报废,轻微的进行校直。所有经过校直的零件必须进行去应力退火和磁粉探伤,防止校直缺陷件流出,取得了良好成效。


6.结语

(1)齿轮轴磁粉探伤显示由裂纹引起,裂纹的性质为沿晶脆性裂纹。

(2)齿轮轴裂纹的产生,是因为个别零件碳氮共渗后变形超差,增加了校直工序。而由于校直过程控制不当,所以产生了应力裂纹。

作者:张英

单位:陕西长空齿轮有限责任公司

来源:《金属加工(热加工)》杂志

图片加载中...
❤ 请关注 微信公众号: steeltuber.
 转载请保留链接: http://www.josen.net/Steel-Knowledge/clztsqxxsyyfx.html
(本平台"常州精密钢管博客网"的部分图文来自网络转载,转载目的在于传递更多技术信息。我们尊重原创,版权归原作者所有,若未能找到作者和出处望请谅解,敬请联系主编微信号:steel_tube,进行删除或付稿费,多谢!)
搜索本站钢铁技术
★↓在此搜索查找钢铁材料知识↓★↘

互联网 www.josen.net


钢铁行业热点文章推荐

常州精密钢管博客网主办单位:
常州仁成金属制品有限公司 是 专业的 精密钢管 生产厂家,汽车钢管,电机壳钢管 生产单位。


常州精密钢管博客网推荐您访问:

常州精密钢管博客网
(常州仁成金属钢管制品生产厂家博客网站)
www.josen.net©2006-2021
苏ICP备08003692号

【关于本站】【提问】网站地图【搜索】【知识星球】电脑端